Retinoic acid improve germ cell differentiation from human embryonic stem cells

نویسندگان

  • Liu Xuemei
  • Yue Jing
  • Xu Bei
  • Hu Juan
  • Ren Xinling
  • Liu Qun
  • Zhu Guijin
چکیده

BACKGROUND Creation of artificial gametes may provide a universal solution for these patients with no gametes. Stem cell technology may provide a way to obtain fully functional gametes. Retinoic acid (RA) can initiate meiosis. Several studies have demonstrated that RA can promote sperm cells differentiation from mouse embryonic stem cells (mESCs) and other cells from human embryonic stem cells (hESCs). OBJECTIVE We sought to determine whether RA could promote differentiation of germ cells from hESCs. MATERIALS AND METHODS hESCs were differentiated as embryoid bodies (EBs) in suspension with all-trans RA (atRA) or without atRA for 0, 1, 3, 5 and 7 days, and then the expression of VASA, SCP3, GDF9 and TEKT1 were compared by real-time PCR. The statistical differences were evaluated by one way ANOVA. RESULTS The expression of germ cell-specific markers including the gonocyte marker VASA, the meiotic marker SCP3, and post meiotic markers, GDF9 and TEKT1, all increased in the presence and absence of RA as EB differentiation progressed. In addition, the expression of these markers increased an average of 9.3, 6.9, 7.2 and 11.8 fold respectively in the presence of RA, compared to the absence of RA, over 5 days differentiation. CONCLUSION Our results indicate that hESCs may have the potential to differentiate to primordial germ cells (PGCs) and early gametes. RA can improve germ cells differentiation from hESCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells

  Objective(s): Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs) to germ cells.   Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence p...

متن کامل

A vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells

Objective(s):To culture thein vitro mouse embryonic stem cells (mESCs) and to direct their  differentiation to germ-line cells; in present study we used a vector backbone containing the fusion construct Stra8-EGFP to select differentiated ES cells that entered meiosis.  Retinoic acid was used to differentiate embryonic stem cells to germ cells. Materials and Methods: A fragment of Stra8 gene pr...

متن کامل

تاثیر رتینوئیک اسید در تمایز سلّول‎های بنیادی مزانشیمال بافت چربی به سلّول‎های زایا

  Background: Recent publications regarding the differentiation of stem cells to germ cells have motivated researchers to make new approaches in infertility. In vitro production of germ cells improves the understanding of differentiation process of male and female germ cells. Since using embryonic stem cells for this purpose has been associated with tumorogenesis and ethical criticisms, the men...

متن کامل

Male germ-like cell differentiation potential of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in co-culture with human placenta cells in presence of BMP4 and retinoic acid

Objective(s):Mesenchymal stem cells (MSCs) derived from Wharton’s jelly (WJ-MSCs) are now much more appealing for cell-based infertility therapy. Hence, WJ-MSCs differentiation toward germ layer cells for cell therapy purposes is currently under intensive study. Materials and Methods: MSCs were isolated from human Wharton’s jelly and treated with BMP4, retinoic acid (RA) or co-cultured on huma...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2013